Wedge transducer design for two-dimensional ultrasonic manipulation in a microfluidic chip
نویسنده
چکیده
We analyze and optimize the design of wedge transducers used for the excitation of resonances in the channel of a microfluidic chip in order to efficiently manipulate particles or cells in more than one dimension. The design procedure is based on (1) theoretical modeling of acoustic resonances in the transducer–chip system and calculation of the force fields in the fluid channel, (2) full-system resonance characterization by impedance spectroscopy and (3) image analysis of the particle distribution after ultrasonic manipulation. We optimize the transducer design in terms of actuation frequency, wedge angle and placement on top of the chip, and we characterize and compare the coupling effects in orthogonal directions between singleand dual-frequency ultrasonic actuation. The design results are verified by demonstrating arraying and alignment of particles in two dimensions. Since the device is compatible with high-resolution optical microscopy, the target application is dynamic cell characterization combined with improved microfluidic sample transport.
منابع مشابه
Temperature regulation during ultrasonic manipulation for long-term cell handling in a microfluidic chip
We demonstrate simultaneous micromanipulation and temperature regulation by the use of ultrasonic standing wave technology in a microfluidic chip. The system is based on a microfabricated silicon structure sandwiched between two glass layers, and an external ultrasonic transducer using a refractive wedge placed on top of the chip for efficient coupling of ultrasound into the microchannel. The c...
متن کاملUltrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
Several cell-based biological applications in microfluidic systems require simultaneous high-throughput and individual handling of cells or other bioparticles. Available chip-based tools for contactless manipulation are designed for either high-precision handling of individual particles, or high-throughput handling of ensembles of particles. In order to simultaneously perform both, we have comb...
متن کاملSpatial confinement of ultrasonic force fields in microfluidic channels.
We demonstrate and investigate multiple localized ultrasonic manipulation functions in series in microfluidic chips. The manipulation functions are based on spatially separated and confined ultrasonic primary radiation force fields, obtained by local matching of the resonance condition of the microfluidic channel. The channel segments are remotely actuated by the use of frequency-specific exter...
متن کاملModelling for the robust design of layered resonators for ultrasonic particle manipulation.
Several approaches have been described for the manipulation of particles within an ultrasonic field. Of those based on standing waves, devices in which the critical dimension of the resonant chamber is less than a wavelength are particularly well suited to microfluidic, or "lab on a chip" applications. These might include pre-processing or fractionation of samples prior to analysis, formation o...
متن کاملCombination Ultrasonic- Dielectrophoretic Particle Traps for Particle Trapping and Sample Purification in a Microfluidic Channel
Ultrasonic and dielectrophoretic particle manipulation have been studied for particle trajectory modification and particle trapping in microfluidic channels. We report an approach that combines dielectrophoresis (DEP) and ultrasonic fields to trap and concentrate particles and cells in an aqueous suspension. By simultaneously applying electric and ultrasonic fields to the sample, the favorable ...
متن کامل